

Examiners' Report June 2017

IAL Physics 3 WPH03 01

https://xtremepape.rs/

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Giving you insight to inform next steps

ResultsPlus is Pearson's free online service giving instant and detailed analysis of your students' exam results.

- See students' scores for every exam question.
- Understand how your students' performance compares with class and national averages.
- Identify potential topics, skills and types of question where students may need to develop their learning further.

For more information on ResultsPlus, or to log in, visit<u>www.edexcel.com/resultsplus</u>. Your exams officer will be able to set up your ResultsPlus account in minutes via Edexcel Online.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk.

June 2017

Publications Code WPH03_01_1706_ER

All the material in this publication is copyright © Pearson Education Ltd 2017

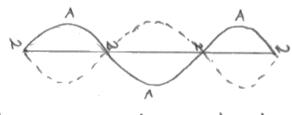
Introduction

This paper examines practical skills for overseas candidates. The best answers showed familiarity with practical investigations and apparatus and the need for the use of an appropriate number of significant figures in a paper testing practical skills. While most candidates realised that it is important to read the introduction to questions carefully and to address the tasks set, some penalised themselves, as in previous series, by not using scientific terms where appropriate or by quoting published mark schemes from previous years which were for different questions.

The mark scheme is published on the website and should be read with this report.

Section A

The majority of candidates answered the five multiple choice questions well, over 70% scoring 4 or more.


Question number and correct response		Торіс	Most frequent incorrect response	Comment
1	С	SI system	A	There was confusion between units and quantities.
2	В	Finding a mean value	D	Most candidates understood the need to discard an anomalous result.
3	D	Viscosity	В	The relationship seemed well understood.
4	С	Selecting instruments	D	The appropriate instrument was well known.
5	В	Units	A	The unit could have been derived from the relationship.

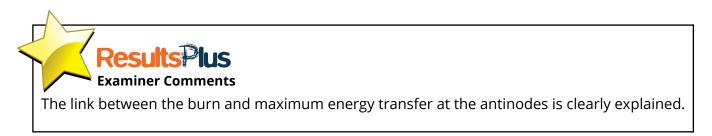
Question 6 (a) (i)

Answers to this question were often disappointing: many simply restated the assertion given in the question. Also many of the diagrams drawn by students lacked the clarity afforded by basic labelling.

(4)

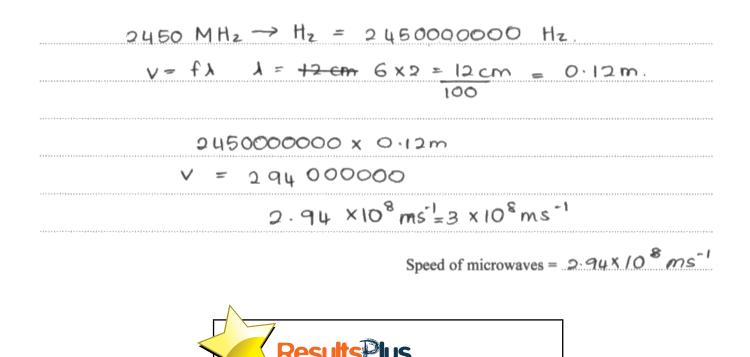
This is a good answer which gained both the available marks.

N-12 node, A-2 anti-node


Bus on marks appear where intensity of microwaves is maximum due to suppreposition, i.e. at an anti-note(A). Distance between two assure burn marks is distance between two successive anti-node, Dis which is half of wave long the Therefore, wavelength Distance (d) - X =) X = dx2 is twice the distance. -)

This was another good answer.

wh node Node Antinode rode In standing waves, there are points called nodes, where en autinodes, where energy is maximum. 18 minimum, and an antissede (maximum heat energy occurs when there the distance between two adjacent antinodes is half the waveleigh. That is is why wavelength of microwane is twice the distance between the a



Question 6 (a) (ii)

Many students scored full marks for the calculation and handled units, powers of 10 and significant figures effectively. The most common error was a mismatch of unit and value. Some students omitted the necessary doubling of the measurement given.

This is a good answer.

The conversion of unit submultiples is well done.

Examiner Comments

Question 6 (b)

Most students were able to give a precision appropriate to their chosen instrument, although some did not give sufficient detail in their choice of instrument, for example saying 'ruler' rather than identifying the instrument properly as a metre rule, or as a 30 cm rule.

This answer gained full marks.

Metre Rule. offic As it is a small distance, it is easier to measure using 40 MEGSUR a metre rule been i because - Precision nearest +1mm (ii) Calculate the percentage uncertainty in the 6.0 cm distance when measured with your chosen instrument. (1)Percentage uncertaintly = = = 1 x1001 5+1.666 21.671. Percentage uncertainty = $\frac{1}{1.67}$. **Examiner Comments** The choice of a metre rule is clearly justified. Resu **Examiner Tip** Remember to use a sensible number of significant figures.

A vernier caliper is also a suitable instrument for the required distance.

calliper (2) A vernier enlibre would be suitable as it measures distance to the nearest o.imm. - percentage error woold be 1.667. the (ii) Calculate the percentage uncertainty in the 6.0 cm distance when measured with your chosen instrument. (1) 0.1mm × 100% = 0.167% 60mm Percentage uncertainty = 0.167%**Examiner Comments** This answer gained full marks. **Results**Plus

Learn how to calculate percentage uncertainties.

Examiner Tip

Question 7

There were very mixed responses to this question; good answers appreciated that a lamp does not obey Ohm's Law and will get hot.

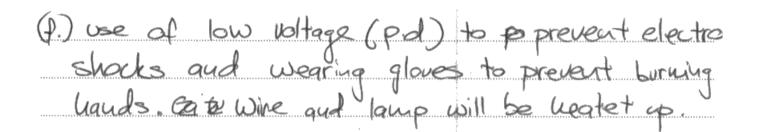
(a) Students usually drew good circuit diagrams, often using an acceptable mix of conventional circuit symbols and suitable labels. Very few of the circuits seen would not work and nearly all included some appropriate means to vary the lamp current.

(b) Nearly all of the students successfully identified the required quantities and instruments. A few suggested measuring resistance directly with an ohmmeter, which would be an inappropriate technique for this experiment.

(c) Some students gave a response that was perhaps more appropriate to questions seen in some previous papers. They stated that heating (of the lamp) would be an issue and recommended avoiding repetition as a consequence. Those students who did recommend repetition and gave a specific valid aim, for instance to obtain a mean, gained the mark.

(d) Most students sketched a V-I graph, but many drew the curve incorrectly or showed a straight line. Few students gave an explanation that included the calculation of resistance directly from R=V/I. Many went on to suggest using the gradient of their graph to find resistance, which is an inappropriate technique for this experiment.

A small proportion of students suggested calculating resistances directly from R=V/I and then drawing a V-R graph. This approach generally led to a better score for this part of the question.

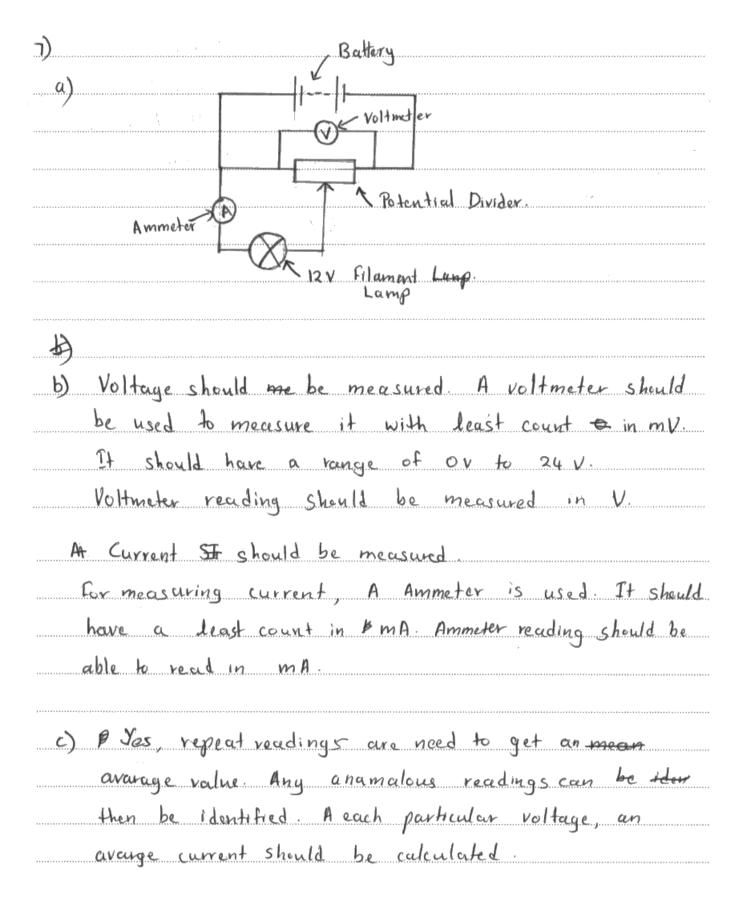

(e) Most students identified a source of uncertainty or systematic error and usually mentioned zero error on a meter. Fewer linked possible parallax error to the use of the scale of an analogue meter.

(f) Many students commented that the experiment was low risk due to the low potential differences expected. Many realised that it would be sensible to avoid touching the lamp whilst it was hot.

Although this is a good answer, the candidate did not realise that a lamp must heat up to produce light.

(f) comment on safety. Switzen Arman	(I)
	(-7
(a) Voltmeter	
(filzment lamp	
Batterie variable conductor potentional divider	
Dattery	

(p.d.) (b) curren(I) and potential difference (V) has to be measured. Current is will be measured with Annueter and potential difference (p.d.) with Voltmeter (c.) yes, repeat reading is required to catcolate the gardient is A No, Battery and lamp can blew because of high udtage and high tenperature. (wait have to wait 5 min before we z take the next readings -> give time to cool down for the heater up material) I= current (A) R.d. (V) val to Blandial difference resit resistance = ting increase of temperature 2) Because of after a certain amount of p.d. \$ so the resistance also increase. The values of resistance will be not consistance, difficultie in take meanments. (e) reding values from the Annunetere. Hungy error white because of incorrect reading or Ammeter dosent show correct value. Zero error with tothe Voltmeter and Ammeter.



In (c) the candidate is not awarded a mark as the point that repeat readings can be used to determine a mean or identify errors has been missed. 'Human error' is not a comment which gains a mark, so the second mark is not awarded for part (e).

In (f) the candidate has realised that the low p.d. used means that this is an experiment with a low risk.

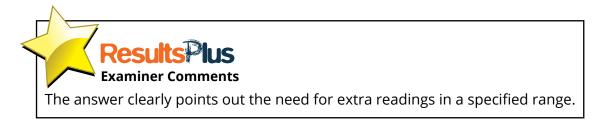
This answer has some weaknesses but answers are clearly explained.

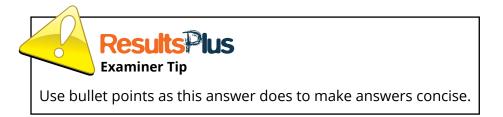
Voltge / V $V = \mathbf{D}\mathbf{R}$ 4) Vollage RXI 147 y = mx x The aquired results are put in a tuble as such; Voltage/V x Then for each voltage, the resistance is calculated by substituting for the equation R = -Then a graph is drawn, Resistance 1.2 -> Voltage/V Finally, For any potential difference, the resistance could be obtained. e) zero error in the instrumets, voltmeter and Ammeter Systematic Groor. Paralax error when reading the voltmeter reading and Ammeter reading if Ananolyue instruments are used. The student

f)	The & fillament bulb is hot so can burn sitshin.
	Avoid contact with the bulb.
	The is a chance of getting electrical shocks so
	wear rubber gloves and shoes.
	The fillcoment bulb could explode due to high
	Voltages so werwear goggles.

The voltmeter is incorrectly positioned so a second mark is not awarded in part (a) In part (d) the graph has been sketched as a straight line rather than a curve, so only two marks are awarded. All the other marks have been awarded.

Results Less Examiner Tip Remember to specify the type of meter as analogue if suggesting parallax errors .


Question 8 (a)


Most students pointed out the inconsistency in the choice of significant figures for recording values in the table. Some appeared to show confusion between the precision of a measurement and the number of significant figures used to record it.

Many observed that the results did not show any evidence of repetition or readings on unloading. Fewer mentioned that it would be useful to take some additional measurements between 600 g and 1000 g.

This is a good answer.

(a) Criticise his results.						
						(3)
· The	-torce	Column	and exten	sion Colu	m0	mcosistent
With	-tru	Significant	figures	after after	clecimal (20m1.
		*				-
						should be
				Ũ		0g
		J		J	100	- J

This is another good answer.

Extension (A2) values are recorded to inconsistant significant figures. Not enough readings taken taken between 600g and 1000g as there i Only 6 No repeat measurements taken to calculate a mean Force values are recorded to inconsistant significant figures

Results Plus

Extension and force are both clearly identified as having inconsistent significant figures.

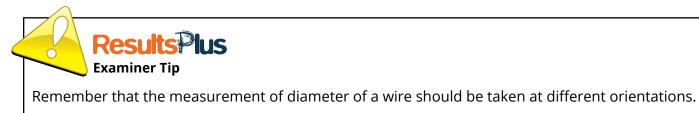
Results lus Examiner Tip It is a good idea to link taking repeat measurements with the calculation of a mean.

Question 8 (b)

Some students concentrated on their reasons for choosing a particular measuring instrument, rather than giving a description of how they should measure the diameter of the wire. Many responses included the techniques of repeating and averaging, fewer made reference to the need to measure the diameter at different positions or at various orientations along the wire.

This is a good answer.

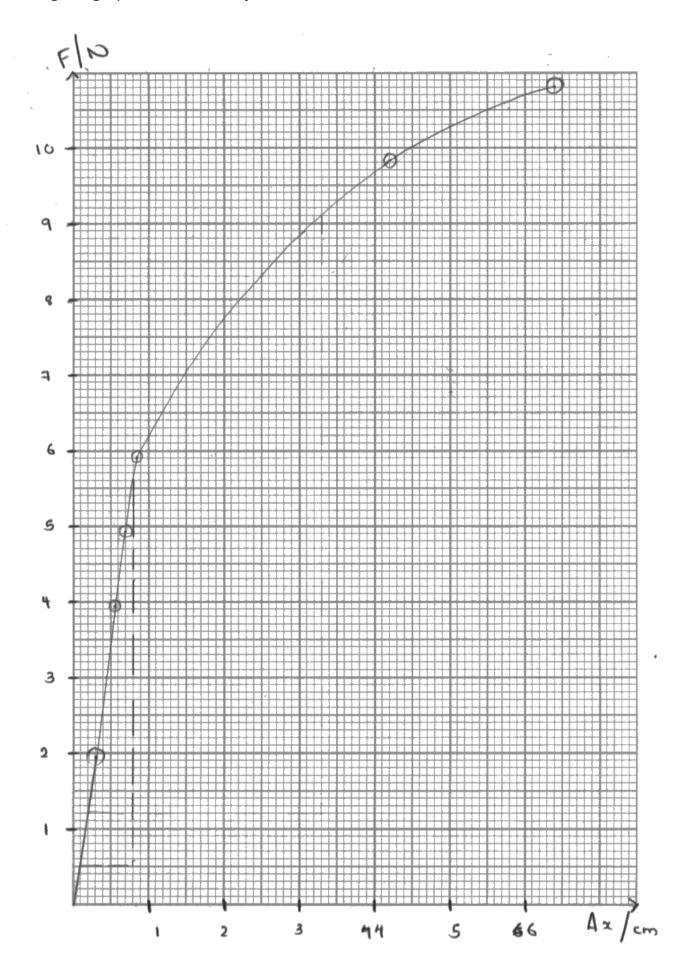
The diameter of the wire should be measured using a micrometer and should be repeated more than once for an average to be It should be repeated at more than one taken. on the where since there might be kinks on Dlace wire.

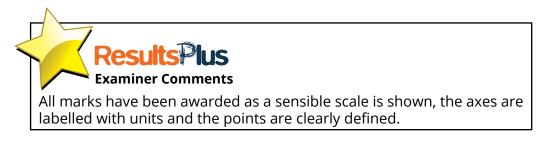

This is another good answer.

(b) Describe how the student should <u>measure the diameter</u> of the wire.

- He should use a micrometer screw gauge and get the diameter across the wire, round the wire at differents points of the wire and then get the average of all the diameters.

(2)



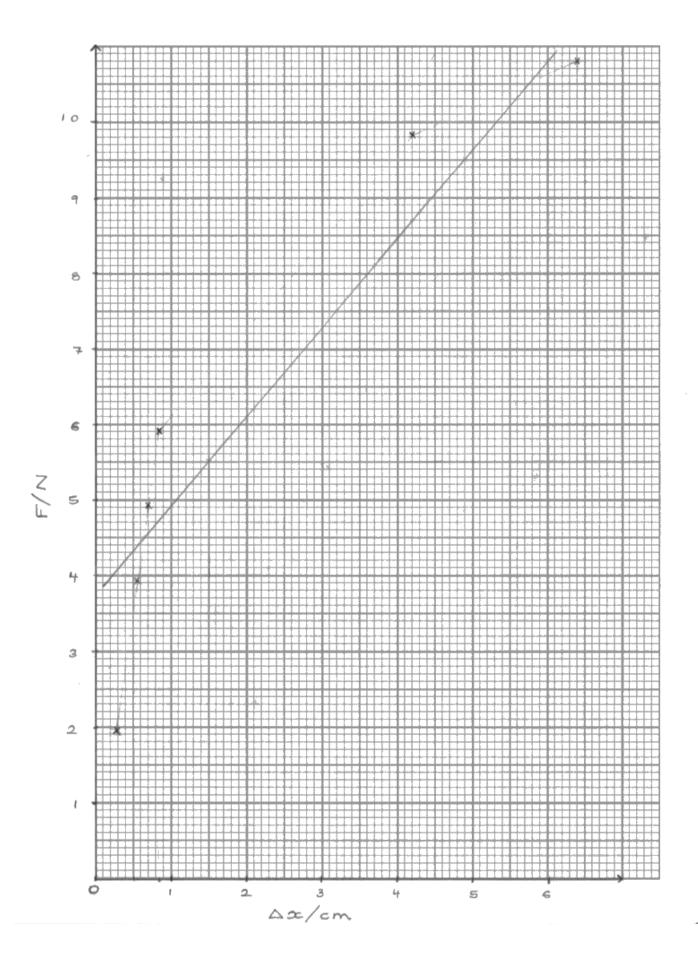

Question 8 (c)

(c) (i) Students generally showed good skill in drawing the graph. Nearly all presented properly labelled axes with appropriate scales. Plotting was accurate in most cases, but many students found it difficult to drawing a line of best fit, either the line did not extend towards the origin or wavered in the curved part.

(c) (ii) Some comments on the shape of the graph were clear, accurate and concise. However, many students avoided commenting on both the types of behaviour exhibited and concentrated solely on the line through the first four points.

(c) (iii) There were some excellent successful calculations, but many students struggled here. It is important that working is shown clearly, so that the examiners can reward the worthwhile points made during an unsuccessful attempt. Some students omitted to halve the value of the diameter of the wire when substituting radius into the formula for cross sectional area. Some students chose to substitute values (or a gradient) from the curved part of their graph and obtained a Young modulus value that was outside the acceptable range. Students should remember that it is important to present their answer with an appropriate number of significant figures and the correct unit. This is a good graph with a carefully drawn curve.

It is a useful to have a pencil with a sharp point to draw lines on graphs and diagrams.


Тие graph shows a pos	sitive correlation between force		
applied and extension of the wire. There is a linear			
relationship up to the	limit of proportionality after that		
increase in extension	Smaller increase in force gives larger after the yield point the Young modulus of the material the wire is made from. (4)		
$E = F \div \Delta x$	m = EA where E = Young Modulus		
R 72	70 A = Cross sectional		
$E = \frac{F}{A} \times \frac{\pi}{\Delta \pi}$	area X = Original length		
	$701.43 = E \times \left[\pi \times (1.225 \times 10^{-4})^2\right]$		
$EA \Delta x = F \times x$	1.35		
$\frac{EA \Delta x}{x} = F$	$E = 2.01 \times 10^{10} Pa$		
$F = \frac{EA \times \Delta x}{x}$	*		
y m zi	Young modulus = 2.01×10^{10} Pa		

Results Plus Examiner Comments

In part (ii) a mark would not have been given for the phrase 'positive correlation' alone, however the candidate also said that there was a linear relationship. The answer to part (iii) has been carefully set out and all stages of the calculation are clearly shown.

Although the points are plotted correctly, the candidate has drawn a straight line rather than a curve.

A good choice of scales and carefully plotted points but the candidate has not realised that the line is a curve not a straight line and so has lost the mark for the line of best fit.

Paper Summary

Most candidates tackled the questions confidently and it was pleasing to see that some had a good understanding of practical experiments, techniques and skills.

Based on their performance on this paper, candidates are offered the following advice:

- Read the question carefully.
- Learn the SI base quantities and corresponding units.
- Make sure you have a pencil with a sharp point and a ruler.
- Draw circuit diagrams using accepted symbols for electrical components.
- Use multiples or sub-multiples of 1, 2 or 5 for scales on a graph.
- A line of best fit can be a curve.
- Don't force a straight line on a graph through the origin.
- Remember to justify assertions.

Grade Boundaries

Grade boundaries for this, and all other papers, can be found on the website on this link:

http://www.edexcel.com/iwantto/Pages/grade-boundaries.aspx

Llywodraeth Cynulliad Cymru Welsh Assembly Government

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R 0RL.